The Future of Offshore Wind

REvision2024

Mr. Matthew Wittenstein

Chief of Section, Energy Connectivity, UN Economic and Social Commission for Asia and the Pacific

14 March 2024

About UN ESCAP

The United Nations Economic and Social Commission for Asia and the Pacific (UN ESCAP) is one of five UN regional hubs

- 53 member States
- 9 associate members

Promotes inclusive and sustainable economic development in the Asia-Pacific region, and supports implementation of the 2030 Agenda for Sustainable Development.

Energy Division areas of work: (1) Achieving SDG 7; (2) Enabling energy connectivity; (3) Energy transition and the extractive industries

Two implications of the energy transition

The evolving role of grids and storage

Energy transition implies a shift from *fuel*- to *weather-dependent* power systems

Grids: connect supply to demand

The need for larger, more integrated power systems

Source: Seamless Power Markets (IEA, 2014)

https://www.unescap.org/our-work/energy/energy-connectivity/roadmap

Off-shore wind and the potential for regional collaboration

Technical potential for offshore wind, East Asia

Shallow water (10 - 60 m): Near shore (<60 km) Deeper water (60 - 2 000 m): Near shore (<60 km)

Cross-border collaboration can accelerate off-shore wind development

Deep water resources with relatively high development costs. Collaboration can reduce costs and accelerate deployment:

- Co-develop supply chains and off-shore infrastructure
- Leverage supply-demand diversity
- Link to other low-carbon resources (on-shore RE, hydrogen)

Source: IEA, Offshore Wind Outlook 2019

Contrasting two integration models:

Point-to-grid:

- Resource could be domestic or in neighboring territory
- Allows for increased certainty of resource type and availability
- Easier to measure costs and benefits (limited spillover effects)
- Enables integration of external resources into domestic system without considering conditions of host system
- Limits potential for resources optimization at system level
- Limited potential for bidirectional and multilateral trade

Hybrid:

- Combined interconnector and generation resource(s) ('Energy Island')
- Share across two or more borders
- Enables interconnection of remote resources among multiple countries / jurisdictions while also facilitating bidirectional trade
- Enables increased utilization of both grid and generation
- Currently being used for offshore wind resources in Europe
- Requires closely integrated system operations and clear cost sharing / recovery method

Critical energy transition materials: uneven distribution and concentrated supply chains

As the energy transition progresses, energy security discussions increasingly focus on **availability and security of the supply** of critical minerals.

Some key takeaways

- Energy transition will transform our energy systems across multiple dimensions
 - Reduced reliance on fossil fuels => implications for capacity, system services
 - Increased share of variable renewable energy resources => need for flexibility, storage
 - Increased demand for critical minerals => implications for supply chains
- Off-shore wind has tremendous potential, but challenges need to be addressed
 - High cost
 - Need for technical innovation (e.g. floating offshore)
- Collaboration can help overcome challenges:
 - Joint or coordinated development of infrastructure, supply chains
 - Harmonization of standards? Financing?
 - Potential for 'hybrid' model to unlock multiple benefits

ESCAP

Economic and Social Commission for Asia and the Pacific