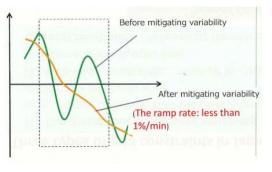
自然エネルギーの大量導入に向けた 系統運用の転換

Transition of grid management toward for large-scale renewable energy integration

公益財団法人 自然エネルギー財団 上級研究員 分山達也 博士(工学) Tatsuya Wakeyama, Ph.D. Senior Researcher, Renewable Energy Institute

日本の系統運用の課題 Issues of grid management

系統接続 Grid connection


例:東北電力エリア Tohoku-EPCO area

TO THE LOCATION OF THE PARTY OF

系統接続時の増強費用負担 Cost burden of grid reinforcement to connect

柔軟性 Flexibility

例:北海道電力エリア Hokkaido-EPCO area

蓄電池費用負担Cost burden for storage batteries

需給運用
Demand and supply
management

例:九州電力エリア Kyushu-EPCO area

無制限無補償の出力抑制リスク Risk of unlimited curtailment without compensation

系統運用の転換の視点 Transition of grid management

系統設備のより効率的な運用 Improvement of grid availability

電力システムの柔軟性向上 More flexible electricity system

より経済的な広域運用 More economic cross-regional operation

情報公開とモニタリング Information disclosure and monitoring

混雑管理による系統設備のより効率的活用

Improvement of grid availability by using congestion management

これまでのルール Previous rules

- ① 先着優先 First come- first served
- ② 最大容量でのファーム接続 Firm connection at maximum capacity
- ③ 混雑回避のための系統増強 Grid reinforcement to avoid grid congestion
- ④ 平常時の混雑管理を避ける Avoid congestion management in normal time

課題 Issues

- ① 保守的な系統アクセス権割当 Conservative allocation of grid access right
- ② 想定上の系統混雑の発生/実 潮流では混雑は少ない Grid congestion in assumption / Small congestion in actual flow
- ③ 新規接続者は増強を要求される Burden of grid reinforcement are required to new entrants
- ④ 過剰な設備形成につながる恐れRisk of excess grid reinforcement

系統設備のより効率的な運用 Improvement of grid availability

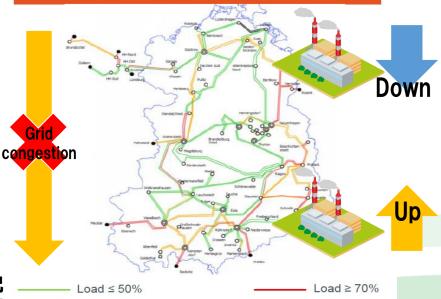
現在の検討状況 Current plan

日本版コネクト&マネージ:新規参入 者の抑制、費用負担を条件とした系 統接続スキーム Japanese connect & manage: grid connection based on suppression and cost burden of new entrants

日本版コネクト&マネージ Japanese connect & manage

- ① 想定潮流の合理化 More reasonable evaluation of power flow projection
- ② N-1電制 N-1 disconnection
- ③ ノンファーム接続 Non-firm connection

右図:ドイツ50Hertz地域における系統混雑状況 50Hertz発表資料より


更なる効率化 Further improvement

再給電の導入:既存電源を含めた混 雑管理スキーム

Redispatch: congestion management by using existing thermal plants

Grid congestion in 50hertz 2014

50% < Load < 70%

No Values

柔軟性の課題 Issues of flexibility

柔軟性(Flexibility):

出力変化速度、最低発電出力、起動時間、起動コスト、部分負荷効率など Ramp rates, minimum generation level, start-up costs and part load efficiency..

これまでのルール Previous rules

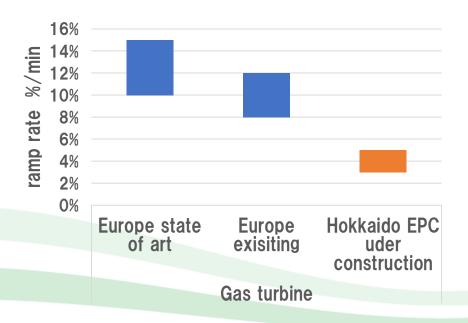
① 長期固定電源の優先給電 Priority dispatch for long-term fixed power sources (nuclear, hydro & geothermal)

- ※: 例えば5月の低需要時間帯では、 長期固定電源の供給力が需要を上回る。
- *: For example, output of long-term fixed power sources can excess electricity demand in period with lowest electricity demand in May.

課題 Issues

- 1 北海道電力エリアでは、原子力発電が再稼働した場合、長期固定電源の割合が非常に高くなる(※)。 In Hokkaido EPC area, long-term fixed power sources will supply very high share of electricity if all nuclear restart (*).
- ② 変動追従能力の不足 Lack of ramp up/down capability to variability of load and renewables

電力システムの柔軟性向上


More flexible electricity system

現在の検討状況 Current plan

新規電源による蓄電池費用負担:

Cost burden of storage battery system by new entrants

① 太陽光発電や風力発電の出力変動緩和対策に関する技術要件 Technical requirement for mitigating variability of PV and Wind

新たな課題 Next issues

発電設備の柔軟性を引き出す制度 Policy to bring out the flexibility potential of power plants

- ① 火力発電の柔軟性の最大限活用 Making maximum use of flexibility of thermal power plants
- ② 新規発電設備への柔軟性要件 Flexibility requirement to new power plants
- ③ グリッドコード Grid code
- 4 卸売電力市場の制度設計 Wholesale market design to promote more flexible power source

図:ガス火力発電所の出力変化速度比較 Figure: Comparison of ramp rate of gas turbine between Europe* and Hokkaido**

*Agora Energiewende, Flexibility in thermal power plants **北海道電力資料より

広域での需給運用の効率化

Improvement of efficiency of cross-regional demand and supply operation

従来の連系線利用ルールPrevious rules of interregional grid

- ① 先着優先 First come- first served
- ② 最大10年間の連系線容量割当 Interregional grid capacity is allocated up to 10 years
- ③ 広域電力市場取引は未利用の 連系線空容量を利用して実施 Cross regional electricity trade is conducted through unused capacity of interregional grid

課題

Issues

- ① 新規電源の地域間取引が困難 Cross regional trade by new generator are more difficult
- ② 自然エネルギーの変動を各地域 内で吸収しなければならない Variability of renewables must be absorbed in each area
- ③ 無制限無保証の出力抑制リスク Risk of unlimited curtailment without compensation

現在の検討状況 Current plan

卸売市場を活用する連系線ルール: Interregional grid rule to use wholesale market

- ① 電源差し替え replacement of generator by interregional grid user
- ② 間接オークション implicit auction

OCCTO運用容量算定結果より、財団作成

https://www.occto.or.jp/renkeisenriyou/oshirase/2 016/files/besshi_h29_38unyouyouryou.pdf

Net transfer capacity ←→Direction

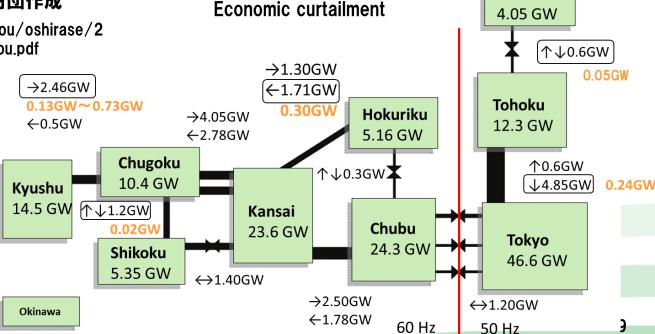
Capacity assumed to be used for renewables

AREA name

Peak load in August, 2016

更なる効率化 Further improvement

電力市場によるバランシング機能向上 Enhancement of balancing capability by electricity market


Hokkaido

① 優先給電から市場給電へ From priority dispatch to market dispatch

② 実時間に近い予測や取引

③ 経済的出力抑制

Forecast and trade near the real-time

おわりに Conclusion

系統設備のより効率的な運用 Improvement of grid availability

日本版コネクト&マネージ "Japanese Connect & Manage"

Next step: 既存電源を含めた再給電 Redispatch including existing thermal plants

電力システムの柔軟性向上 More flexible electricity system

系統側蓄電池の活用 Using storage battery system

Next step: 発電設備の柔軟性を引き出す To bring out the flexibility of power plants

より経済的な広域運用 More economic cross-regional operation

間接オークション implicit auction

Next step: 電力市場のバランシング機能向上 Enhancement of balancing capability of market

情報公開とモニタリング Information disclosure and monitoring

各視点の進展を把握するためのデータや指標の公開 information disclosure of data and indicators to monitor these progress