

#### Overview of development of cross-border interconnections

2017-10-30

#### Bo Normark

Senior Policy Advisor Renewable Energy Institute, Tokyo

Member of the Swedish Royal Academy of Engineering Sciences

# Where will the energy come from?



Source: University of Twente

# **Europe has already decided Today 90 % RES**

Annual installed capacity and renewable share



Source: WindEurope

# The European power challenge

- Strong expansion of variable renewable production
- Uncoordinated expansion of production
- Different incentive / tax systems
- Loop flows
- Unstable prices



# Cornestones in european energy policy

# Develop a fully operational and interconnected Energy Union

to enable energy diversification and guarantee security of supply.

# Promote the integration of renewable energies so that

27 % of total energy consumption comes from renewable sources, hence reducing energy dependency.

#### Reduce greenhouse gas emissions by

-40 % compared to 1990 levels.

# The balance / variability challenge



Source: DG Internal Policies 2015

# Interconnections key to power balance Example wind power in Denmark

Figure 6 • Average trade on interconnection lines by wind generation levels, western Denmark, 2015



Hourly Wind production (MWh)

Source: Adapted from Energinet.dk (2016), Market data

#### **ENTSO-E**

#### Ten Year Network Development Plan 2016



€150bn

investments, of which 70-80 by 2030

50% to 80%

emissions cut depending on the vision

1 to 2 €/MWh

impact on bills due to transmission investment

1.5 to 5 €/MWh 40%

potential reduction in wholesale prices

45 to 60%

RES across 4 Visions for 2030

reduction in congestion hours

## ENTSO-E, Ten Year Plan, all projects



#### **Case: INELFE Interconnection France - Spain**



- Security of supply
- Increased efficiency
- Economy
- Integration of RES
- Total cost €1.75bn of which EU support €0.70bn



### **Case: INELFE Interconnection France - Spain**

SEW Savings in generation fuel and operation cost Meuros/yr

RES Additional hosting capacity renewable GWh/yr

Losses Reduction in losses GWh/yr

CO2 Change in CO2 emissions
 kT/yr

| EP2020    | Vision 1                                      | Vision 2                                                               | Vision 3                                                                                                                                                                                                 | Vision 4                                                                                                                                                                                                                                                                    |
|-----------|-----------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N/A       | N/A                                           | N/A                                                                    | N/A                                                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                         |
| 200 ±30   | 120 ±20                                       | 150 ±20                                                                | 120 ±30                                                                                                                                                                                                  | 240 ±30                                                                                                                                                                                                                                                                     |
| 40 ±40    | 460 ±200                                      | 960 ±190                                                               | 700 ±250                                                                                                                                                                                                 | 1000 ±140                                                                                                                                                                                                                                                                   |
| 700 ±100  | 800 ±100                                      | 1200 ±400                                                              | 750 ±100                                                                                                                                                                                                 | 1200 ±200                                                                                                                                                                                                                                                                   |
| 30 ±5     | 40 ±10                                        | 55 ±20                                                                 | 35 ±10                                                                                                                                                                                                   | 55±20                                                                                                                                                                                                                                                                       |
| 2400 ±500 | 800 ±400                                      | ±100                                                                   | -1000 ±200                                                                                                                                                                                               | -2300 ±200                                                                                                                                                                                                                                                                  |
|           | N/A<br>200 ±30<br>40 ±40<br>700 ±100<br>30 ±5 | N/A N/A 200 ±30 120 ±20 40 ±40 460 ±200 700 ±100 800 ±100 30 ±5 40 ±10 | N/A       N/A       N/A         200 ±30       120 ±20       150 ±20         40 ±40       460 ±200       960 ±190         700 ±100       800 ±100       1200 ±400         30 ±5       40 ±10       55 ±20 | N/A       N/A       N/A       N/A         200 ±30       120 ±20       150 ±20       120 ±30         40 ±40       460 ±200       960 ±190       700 ±250         700 ±100       800 ±100       1200 ±400       750 ±100         30 ±5       40 ±10       55 ±20       35 ±10 |

### 75 planned links, 25 Submarine









100% RES electricity (X7): 100% renewable electricity with both large scale and small-scale generation units, as well as links with North Africa. Both large-scale and small-scale storage technologies are needed to balance the variability in renewable generation.

Distribution of the 50 terrestrial and 25 submarine links in transmission capacity (MW) X distance (km) for the scenario: '100% RES (X7)'



### Will transmission investments pay off?









100% RES electricity (X7): 100% renewable electricity with both large scale and small-scale generation units, as well as links with North Africa. Both large-scale and small-scale storage technologies are needed to balance the variability in renewable generation.



X-7 - 2040

# **ENTSO-E, Ten Year Plan Observations**

- Involves the entire continent
- High number of off-shore cables
- Both onshore and offshore HVDC transmission systems
- All HVDC Systems based on VSC Technology

# Market / Price challenge Market integration, starting with regions



# Lessons learned

- Grid investments is generally a very cost efficient way to improve the electricity system.
- Multiple benefits from interconnectors
- A common system for economical evaluation of projects is essential.
- Value of interconnections is higher the more renewable production is introduced.
- Be aware of technological development, new solutions gives more options.



#### Overview of development of cross-border interconnections

2017-10-30

#### Bo Normark

Senior Policy Advisor Renewable Energy Institute, Tokyo

Member of the Swedish Royal Academy of Engineering Sciences