# **The Global Geothermal Energy Market**

Grimur Bjornsson
Managing Director and Reservoir Engineer
Reykjavik Geothermal, Iceland
www.rq.is / grimur@rg.is

Revision 2012 - New Renewable Direction for Japan Plaza Heisei, Tokyo Int. Exchange Centre 9-10 March 2012

#### **Current Status of Geothermal**

- Only 0.1-0.3 % of world energy demand is met by geothermal, despite a theoretical 1 TW power potential and 30-60 TW in direct use
- The industry is slowed down by green field risks, large upfront capital investment, and power generation costs exceeding other locally available options
- The human resource pool, number of development companies and investors willing to enter the industry are also limiting factors
- Rising prices of fossil fuel is changing the scene
- Current growth rate is few hundred MW per year while the potential is in the GW range



#### **High and Low Grade Geothermal**

- High grade resources confined to active plate boundaries and volcanoes
- Typically hosting 220-350 °C water and steam saturated reservoirs at 700-3000 m depth
- Most economic for power production
- Low grade resources (<150 °C) found worldwide</li>
- Direct use applications most economic
- With emerging technologies and proven permeability in sedimentary basins below 2 km depth, cooling by absorption chillers is attractive



### **Origin of Geothermal Heat**

- Radioactive decay generates the heat
- Heat flows to surface by conductive and convective processes
- Global heat loss by conduction is 44 TW and by magma convection around 3 TW
- Stored heat in topmost 3 km of continental crust estimated at 43x10<sup>6</sup> EJ
- World annual consumption in 500 EJ range



Source: Stefansson V., 2005: World Geothermal Assessment. Proc. World Geothermal Congress







#### **Active Volcanoes and Power Potential**

- The number of active volcanoes and a country scale geothermal power potential correlate
- On the average each active volcano can sustain about 160 MW electric
- The world potential is ~200 GW if all the 1322 accessible volcanoes are developed
- Higher if hidden resources are assumed to exist



Source: Stefansson V., 2005: World Geothermal Assessment. Proc. World Geothermal Congress



#### 1 TW Theoretical World Power Potential



- Based on assessment by Intergovernmental Panel on Climate Change (<a href="http://srren.ipcc-wg3.de/report/IPCC\_SRREN\_Ch04.pdf">http://srren.ipcc-wg3.de/report/IPCC\_SRREN\_Ch04.pdf</a>)
- Excluding EGS, topmost 3 km of dry land only and 90 % capacity
- Only 1% developed today



- Recent geothermal power projects in Iceland and New Zealand demonstrate that renewables compete with fossil
- Quality resources and average well success > 5 MW
- Right developer mind set and risk attitude
- Existing and functional legal and permitting environment
- Long-term, base-load power purchase agreements
- IPPC (2011) reports US 4.9 to 9.2 US cents per kWh as levelized cost of geothermal energy









### **Growth Regions for Geothermal Power**

- Many of the best reservoir in G-20 countries already taken
- Developing countries host vast potential and 10-20 % of the energy mix already from geothermal in some
- Country risk is a barrier, mostly due to lack of legislation, permitting culture and non-transparent application processes
- Opportunity for international energy institutions
- Stranded power regions to be connected by subsea cables













#### **Direct Use Applications**

- Low-grade resource potential is large and favorably distributed worldwide
- Require its own energy distribution systems, consisting of often closed loop insulated pipes buried under ground
- Reykjavik Energy already has 1 GW of capacity
- Handle well peak load, energy storage, are safe and simple to manage and can be supported by many heat sources other than geothermal





## **Direct Use Applications**









Reykjavík Geothermalo

#### **Development Rates and Costing**

- Installation cost of each MW in power 3-5 MUSD
- Development time of 50-100 MW projects tapping into high grade reservoirs is 3-5 year
- Historically the world industry has commissioned 100-200 MW of power annually
- New low grade applications also in the few hundred MW range but development time and cost is less
- Economy of geothermal projects gets better if cogeneration is possible









March 9, 2012

## The Japan Case for New Development

- Second highest world potential of 20 GW high grade
- Industry needs to adapt to environmental and social value of many volcanoes – hide the power plants?
- Large market for house heating and hot tap water
- Growth potential is high if both markets can be served



March 9, 2012

#### **Conclusions**

- Geothermal is an underdeveloped opportunity in the renewable energy sector
- Power projects are geographically constrained to active plate boundaries while direct use has potential in most areas
- Geothermal power is price competitive if tapping favorable reservoirs and in the right business environment
- Substantial power potential in developing countries
- Japan has large growth potential and geothermal can contribute to its future energy mix, particularly if central heating system can accommodate other renewable energy projects

