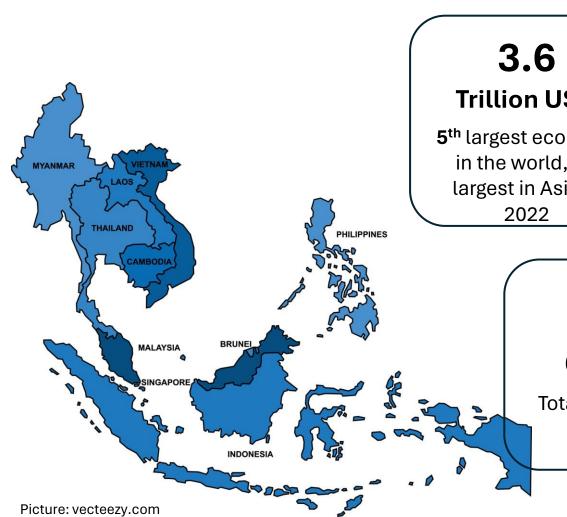
Fabby Tumiwa


Institute for Essential Services Reform (IESR)

Revision 2024, Tokyo, 14 March 2024

Accelerating Southeast Asia's Energy Transition with Renewables

Southeast Asia is one of the largest economies in the world and is projected to grow its energy demand by 44% and emissions by 60% in 2050

Trillion USD

5th largest economy in the world, 3rd largest in Asia in

4%

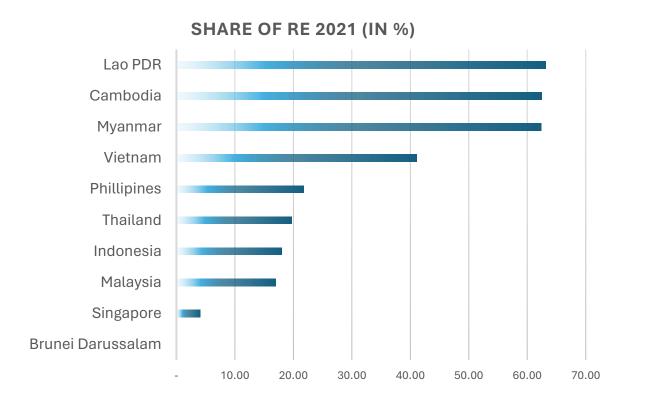
Average annual GDP growth 2015-2022

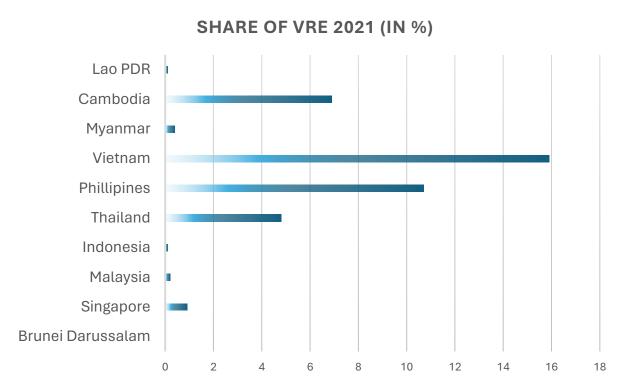
685.15 million

Total population in 2023

1.6 Gt CO₂

Total region's CO2 emission

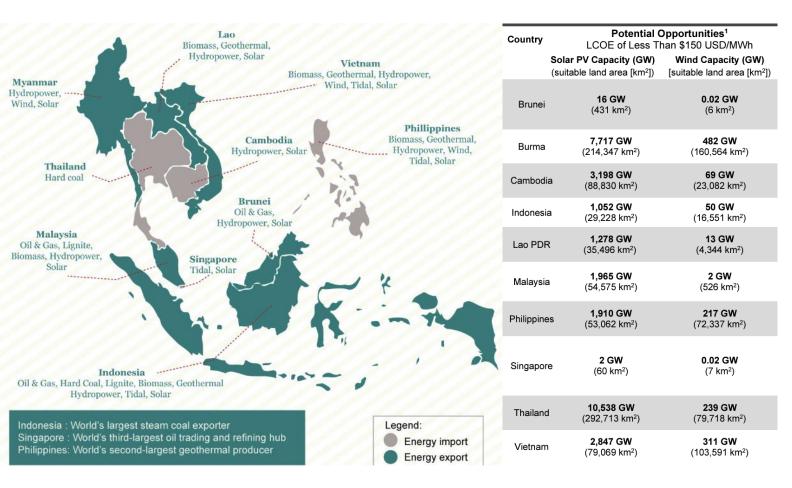

1060 **TWh**


Total electricity consumption in 2021

6.07 **Thousand USD**

> GDP per capita, current price

Southeast Asia countries have a sizeable renewable energy share, but variable renewables (solar and wind) must rapidly increase to meet mid-term decarbonization goal.

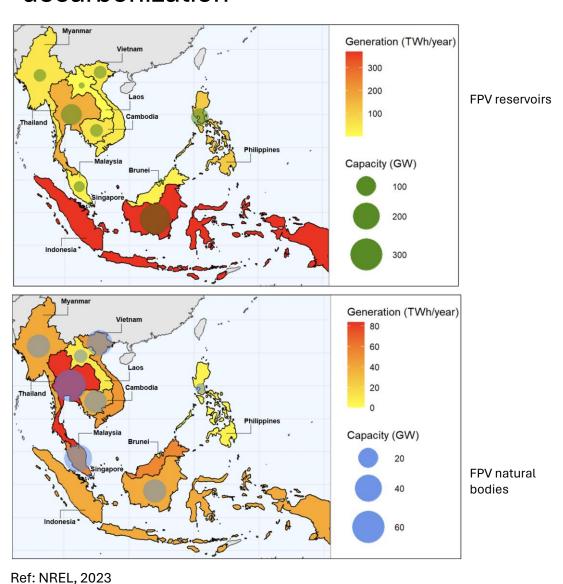


Source: IRENA (2023), IEA (2023)

- To be aligned with 1.5 C, RE must account for 55% of the region's energy mix, of which VREs contribute around 42% (IRENA, 2023).
- Except for Vietnam, Cambodia, and the Philippines, others have yet to reach 5% VRE penetration.

Southeast Asia has vast renewable energy resources that 40-50x larger than today energy demand, sufficient to reach decarbonization by renewables and storage.

Picture credit: ASEAN Post (2017)

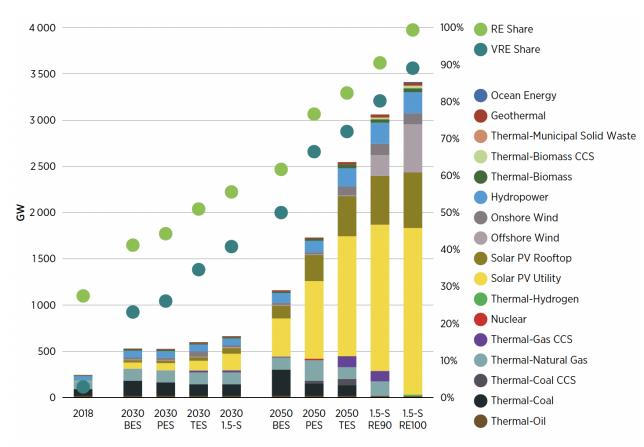

13 sustainable biomass potential in 5 countries

Type of feedstock	Type of process	Total applicable potential bioenergy equilibrium (2050)	
Agricultural residues from major crops, rubber and acacia	Direct combustion for industrial heat generation	696 PJ	
	Direct combustion for combined heat and power generation	1065 PJ	
Palm oil mill effluent (POME) and cassava pulp	Anaerobic digestion to generate biogas for both heat boilers and combined heat and power (CHP) plants 32 PJ		
Agricultural residues from major crops, rubber and teak	Direct combustion for industrial heat generation	8 PJ	
	Direct combustion for combined heat and power generation	449 PJ	
Cassava pulp	Anaerobic digestion to generate biogas for both heat boilers and CHP plants	6 PJ	
Sugarcane molasses and cassava starch and chips to bioethanol	Fermentation & blend to produce bioethanol	98 PJ	
Agricultural residues from major crops, rubber and eucalyptus	Direct combustion for industrial heat generation	188 PJ	
	Direct combustion for combined heat and power generation	145 PJ	
Cassava pulp	Anaerobic digestion to generate biogas for both heat boilers and CHP plants	4 PJ	
Sugarcane molasses to bioethanol	Fermentation & blend to produce bioethanol	4 PJ	
Acacia and rubber	Direct combustion in CHP for heat and power generation	106 PJ	
Woody residues	Direct combustion for industrial heat generation	17 PJ	

Note: PJ = Petajoules

Source: NREL (2020) Source: IRENA (2022)

Floating PV can play important role in the region's renewable energy build-up, lead to decarbonization


- Technical potential for FPV in 7301 water bodies: 88 reservoirs, 7213 natural waterbodies.
- Technical potential of 134 278 GW for reservoirs, 343 768 GW for natural waterbodies, vary by country.
- Median case: 825 GW all across Southeast Asia.
- Detailed market and economic technical potential assessment must be carried out, and site-specific techno-economics potential

FPV Cirata Indonesia, 145 MWac

Ref: PV Magazine

Southeast Asia can meet the Paris-aligned decarbonization target by 2050, with renewables and electrification as the main drivers.

Note: RE = renewable energy; VRE = variable renewable energy.

- The Association of Southeast Asian Countries
 (ASEAN) aspires to reach 23% renewables in primary energy supply and 35% in installed capacity by 2025.
- ASEAN members have an aspirational goal to achieve the decarbonization of energy by 2050 and 2060.
- International Renewable Energy Agency (IRENA) model indicates that ASEAN can reach 1.5°C by 2050 with 90-100% renewables.
- Direct use of renewables and electrification by renewables will make up two-thirds of energy demand.
- Electricity constitutes 52% of the final energy demand.
- Energy intensity improvement rate must reach 1.9%/yr.
- Average annual investment in renewable energy capacity must be scaled up 5 times to USD 73 billion/yr.

Source: IRENA and ACE, 2022

Current power market structure in ASEAN poses barriers to VRE's investment and system integration; structural reform of the electricity market is required to mobilize more investment into the region.

System integration

- Heavily regulated market, monopoly by stateowned utility (except PH and SIN).
- Power system planning discourages DER (IDN, TH).
- Contractual inflexibility long-term PPA, take-orpay, must run thermal power (IDN, TH).
- Electricity pricing discourages system flexibility and more efficient dispatch.
- Infrastructure deficiency

Investment

- Long-term political commitment.
- Untransparent planning and procurement mechanism.
- High cost of capital due to financial structure and prevailing risk perception.
- Regulatory uncertainty (i.e., discontinued of FiT in VIE, IDN)
- Local content obligation (i.e., IDN)

Scaling up financing and investment for energy transition in the region requires improvement to reduce risks and uncertainty for investors

- Greater transparency and the wider availability of data around the financial performance and cost of capital for clean energy projects.
- Enhance role for DFIs and blended finance.
- Greater access to risk-hedging tool to address credit and currency risks for private investors.

Market		Investment Priorities			
	Recent Policy Changes	Power sector sustainability	Project bankability	Financing	Integrated approaches
Indonesia	Planning for NZE by 2060. More renewable power in long-term plan, though coal still represents almost 65% of generation by 2030.				
Malaysia	Government announced goal to become carbon neutral by 2050 and stop building new coal-fired plants.				
Philippines	Updated nationally determined contribution in 2021				
Singapore	Government announced Net-Zero Emissions by 2050 target in October 2022				
Thailand	Announced intention to develop plan for NZE by 2065. Updated power expansion plan has reduced dependency on coal in favour of natural gas.				
Vietnam	NZE by 2050 target announced at COP26. Substantial capital is mobilised to renewable power, especially solar, while coal capacity is still planned to expand by 2030.				
Cambodia	Cambodia's Basic Energy plan recommends renewable power make up 65% of total generation by 2030.				

- Low risk/supportive factor for investment
- Potential risk factor/barrier for investment
- High potential risk factor/barrier for investment

Thank You

- www.iesr.or.id
- f iesr.id
- © iesr.id
- **⊌** IESR
- in iesr