## Next Generation Policy Instruments for Electricity Generation from Renewable Sources (RES-E-NEXT)

## **Kristian Petrick** Acting for the IEA-RETD Operating Agent

JREF Conference 17 November 2014, Tokyo, Japan





## Agenda

General introduction to IEA-RETD

 Next generation policy instruments for renewable electricity (RES-E-NEXT)



# The mission of IEA-RETD is to accelerate the large-scale deployment of renewable energies

#### RETD stands for "Renewable Energy Technology Deployment"

IEA-RETD provides a **policy-focused, technology cross-cutting platform** ("Implementing Agreement") under the legal framework of the International Energy Agency

- Created in 2005, currently 8 member countries: Canada, Denmark, France, Germany, Ireland, Japan, Norway, UK
- IEA-RETD commissions annually 5-7 studies bringing together the experience of some of the world's leading countries in RE with the expertise of renowned consulting firms and academia
- Reports and handbooks are freely available at <u>www.iea-retd.org</u>
- IEA-RETD organizes workshops and presents at international events



## Key challenges for an accelerated RE deployment and IEA-RETD Themes

#### **Key Challenges**

- Economic / societal justification for RE support
  - Jobs & economy
  - Externalities & co-benefits
  - Innovation
- Financing renewable energy deployment
  - business case
  - cost of capital and policy instrument design
- Communication / public acceptance
- System integration





## Key challenges for an accelerated RE deployment and IEA-RETD Project Examples

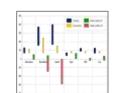
#### **Key Challenges**

- Economic / societal justification for RE
  - Jobs & economy
  - Externalities & co-benefits
  - Innovation
- Financing RE deployment
  - Business cases
  - Costs and policy instrument design
- Communication / public acceptance
  - Lack of understanding
  - Misleading information
- System integration
  - High variable RES-E shares
  - Market design

www.iea-retd.org

#### **IEA-RETD Project Examples**

Employment and Innovation through Renewable Energies (EMPLOY, 2009-12)




Cost and Business Case Comparisons of RE vs. non-RE Technologies (RE-COST, 2013)

#### Communication of best practices for RE (RE-COMMUNICATE, 2013)



Next generation RES-E policy instruments (RES-E-NEXT, 2013)







#### **Economic / Societal Justification - Project Examples**

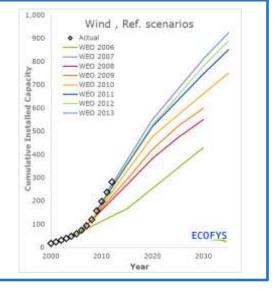


#### Employment and Innovation through Renewable Energies (EMPLOY, 2009-12)

Renewable energy is seen as a great opportunity to create new jobs. Transparency on the overall impact of RE on employment and innovation is needed.

#### Outcome

Methodology and indicators for sustained data collection and monitoring the impact of RE on employment and innovation.


## Discussing assumptions in energy scenarios (RE-ASSUME, 2013) (blog)

How should energy scenarios be read?

#### Outcome

- Many energy scenarios currently being used seem <u>not</u> to incorporate rapid energy market changes adequately
- Policy makers should critically consider assumptions and methodological issues of energy scenarios that before deriving conclusions







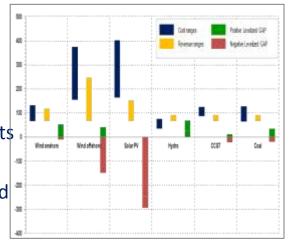
## Financing Renewable Energy – Key challenges for large-scale deployment (FINANCE-RE 2011-12)

Large-scale deployment of RE projects requires much higher levels of funding than invested to date

#### Outcome

RE should be part of a robust economic development strategy

Proven mechanisms should not be abandoned, but new policies have to reduce the risk-to-reward ratio to enhance private sector investor confidence


#### Cost and Business Comparisons of Renewable vs. Nonrenewable Technologies (RE-COST, 2013)

Are RET really less competitive than non-RET?

#### Outcome

- Generation costs of new RET are gradually approaching the costs
   of thermal generation
- Business cases are different for each region/technology pair and highly depend on market and policy conditions





#### **Communication / Public Acceptance - Project Examples**



#### Non-Technical and Non-Economic Barriers (RENBAR, 2013)

Various so-called non-technical and non-economic barriers impede the deployment of renewables in many countries

#### Outcome

Knowledge sharing through examples and a toolbox to facilitate good policy measures.



## Communication of best practices for RE (RE-COMMUNICATE, 2013)

An identified barrier to a widespread use of RE are the (mis-) perceptions in the public, at a political level and within the industry sector.

#### Objective

Provide ideas and techniques on how the benefits of RE can be better communicated to and by policy and decision makers in order to accelerate the deployment of RE.

• Evaluate case studies from various communication campaigns.



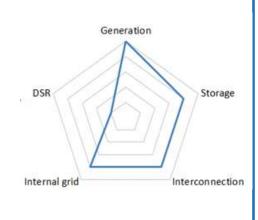


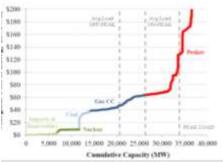
## Integration of variable renewable electricity sources in electricity systems (<u>RE-INTEGRATION, 2014, ongoing</u>) Objectives

•What are typical sets of country specific factors that determine the choice of flexibility options?

What does a – case study based – assessment conclude on the applicability and the effectiveness of the options?

What general lessons might be drawn by countries with similar underlying conditions?


#### Market designs for high shares of RE (RES-E-MARKETS, in preparation, 2014-2015)


Energy market where renewables dominate may not work with marginal prices anymore.

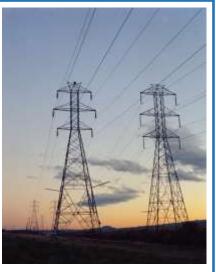
#### **Objectives**

Define how an "optimal" energy market design would look like where renewables are the leading energy source

The study may use a green field approach and provide a "polar star option" where existing markets could be developed towards








#### Next generation of RES-E policy instruments (RES-E-NEXT, 2013)

With substantial shares of RES-E the electricity markets will be affected. System regulation and RE policy instruments have to be changed in order to reflect the system impact.

#### Outcome

An overview of potential future market price mechanisms and next generation policy instruments that aim to improve the electricity system costs in the support schemes.





## Agenda

- General introduction to IEA-RETD
- Next generation policy instruments for renewable electricity (RES-E-NEXT)



## Agenda

- Introduction and Objectives
- **1.Securing RES-E Generation**
- 2.Securing Grid Infrastructure
- **3.Enhancing System Flexibility**
- 4. Securing Generation Adequacy
- Synthesis and Discussion
- Concluding Remarks



#### **Next Generation RES-E Policy Instruments**

| Project Steering<br>Group: | Michael Paunescu (CA, chair), Kjell Sand (NO), Simon Müller (IEA RED), Georgina Grenon (FR), Henriette Schweizerhof (DE).                                          |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Implementing<br>Body:      | NREL (USA), Ecar (Ireland), DIW Berlin (Germany)                                                                                                                   |  |  |
| Execution:                 | September 2012 – July 2013                                                                                                                                         |  |  |
| Objective:                 | To provide an overview and analysis of next generation RES-E policy instruments in the light of changing electricity systems and markets with high shares of RES-E |  |  |
| Status:                    | Completed, downloadable at <u>RES-E-NEXT, 2013</u>                                                                                                                 |  |  |



## **Project Objectives**



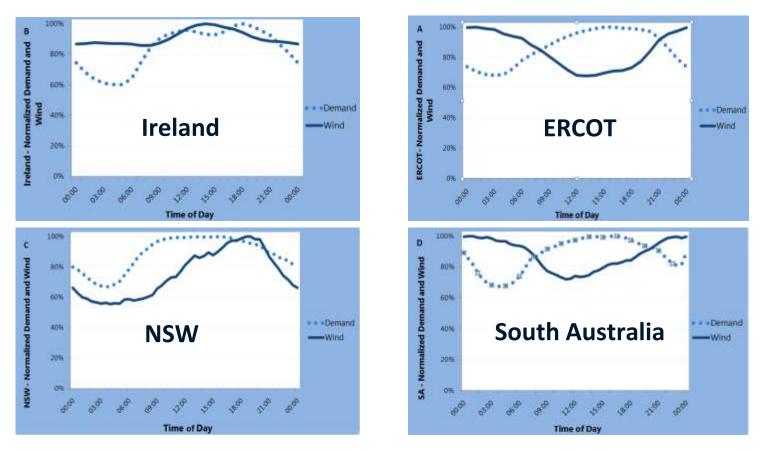
- Evaluate potential changes to policy tools currently used to support RES-E deployment (e.g., feed-in tariffs, quotas, etc.)
- Explore the changes that will be necessary under substantial shares of RES-E generation, especially in:
  - Electricity market design and function
  - Electricity system operation
  - Regulation of the electricity system, and
  - Design of RES-E policy instruments
- Explore interactions between different domains of RES-E policy, for example:
  - How system operational rules (e.g., curtailment) may impact investment (e.g. remuneration mechanisms)
  - How system flexibility strategies (e.g., demand response) may interact with existing market mechanisms (e.g., energy price caps)

www.iea-retd.org



## **Characteristics of next generation RES-E policy**

With increasing penetration, variable RES-E integration increasingly affects power system planning and operation.


As a consequence:

- System-wide impacts will grow, requiring more complex system-wide analysis
- Expert and stakeholder communities are growing more diverse, increasing disagreement on best pathways
- Magic bullet solutions are less and less likely
- Solution-sets are increasingly likely to vary by jurisdiction
- Across jurisdictions, strong policy leadership required and policy coordination is key

## Active, sustained, and coordinated evolution is central to next-generation RES-E policy.



## **Every system is substantially different and faces unique challenges**



As one basic example, wind availability and demand vary widely by system, impacting flexibility requirements, integration strategies, and policy choices.



## Agenda

- Introduction and Objectives
- **1.Securing RES-E Generation**
- 2.Securing Grid Infrastructure
- **3.Enhancing System Flexibility**
- 4. Securing Generation Adequacy
- Synthesis and Discussion
- Concluding Remarks



# High penetrations of RES-E may present financial and technical concerns

- Key strategic questions include:
- How can RES-E deployment continue to grow while managing the costs of incentives?
- How can higher RES-E penetrations be achieved while minimizing grid impacts?
- How might operational changes at higher penetrations impact RES-E generators' (utilities') revenue streams?



In light of these questions, what challenges need to be addressed through next generation policies?



# Challenges include ensuring predictable revenue streams and stable grids—policies can address both

#### Grid-Related Challenges

- Non-dispatchable RES-E adds supply-side variability, increasing balancing needs
- RES-E generators may need to increasingly provide grid support services
- Congestion on transmission lines from wind, distribution feeders from distributed PV

#### Revenue-Related Challenges

Operational requirements could reduce revenues, especially via:

- Prevalence of energy imbalance penalties
- Requirements for RES-E to provide increased grid services
- Greater curtailment of RES-E resources









## Next Generation Policies can meet these challenges by being "cost, market and grid aware"

- 1. Maintain investment certainty for RES-E and minimise the cost of incentives ("cost aware")
  - e.g. FiTs with flexible adjustment
- 2. Encourage positive interplay with markets ("market aware")
  - e.g. proactive consideration of revenue impacts of curtailment practices and energy imbalance penalties
- 3. Respond proactively to changing grid needs ("grid aware")
  - e.g. linking price supports to requirements for RES-E to provide grid support services



#### **Summary of Illustrative Policy Options**

| "Cost Aware"                                                                                                                                                                                                                                                                                                                                                                                 | "Market Aware"                                                                                                                                                                                                                                                                                                              | "Grid Aware"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Support new generation<br/>with cost containment</li> <li>FiTs with Flexible Adjustment</li> <li>Tenders for Long-Term<br/>Contracts</li> <li>Promote Innovation in<br/>Competitiveness and<br/>Market Entry</li> <li>Financing mechanisms –<br/>Ioan guarantees, preferential<br/>Ioans, securitisation,</li> <li>New business models –<br/>leasing, crowdfunding, etc.</li> </ul> | <ul> <li>Improve Revenue<br/>Certainty in Wholesale<br/>Power Markets</li> <li>FiTs linked to wholesale<br/>energy prices</li> <li>Capacity payments<br/>linked to RES-E<br/>capacity credit</li> <li>Transparent and stable<br/>curtailment policies</li> <li>Transparent and stable<br/>energy imbalance rules</li> </ul> | <ul> <li>Minimize Grid Impacts</li> <li>Incentives linked to grid<br/>support capabilities (voltage<br/>support, frequency response,<br/>etc.)</li> <li>Incentives linked to location<br/>of RES-E</li> <li>Incentives linked to<br/>distribution impacts</li> <li>Minimize Operational<br/>Impacts</li> <li>Incentives linked to<br/>dispatchability</li> <li>Incentives to improve<br/>forecasting data</li> <li>Incentives requiring<br/>integration into dispatch<br/>optimisation</li> </ul> |



## Agenda

- Introduction and Objectives
- **1.Securing RES-E Generation**
- 2.Securing Grid Infrastructure
- 3. Enhancing System Flexibility
- 4. Securing Generation Adequacy
- Synthesis and Discussion
- Concluding Remarks



#### **Overview of RES-E grid infrastructure issues**

#### **Development of grid is necessary**

- Connecting generation to load
- Energy and price arbitrage
- Facilitates competition and reduces gaming
- Provides security and reliability
- Reduces aggregate variability and uncertainty of variable renewables
- Enables access to flexibility

#### But is also problematic

- High-quality RES-E can be far away from main load centres
- Planning conundrum: what first, grid or generation?
- Lumpy expansion
- Public acceptance

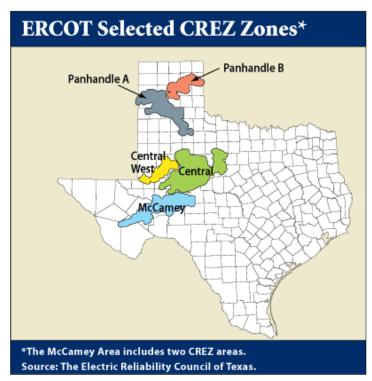




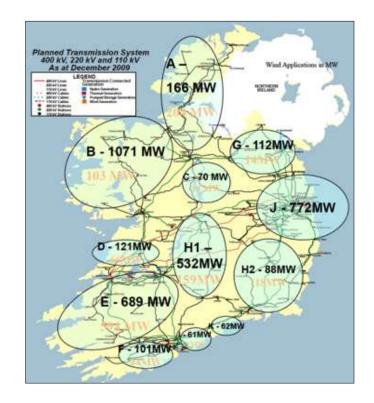
## **Solutions to Address the Challenges of Grid Development**

- Centralised planning
- Addressing public acceptance issues
  - Active stakeholder management and public consultation
  - Undergrounding or partial undergrounding
  - Submarine HVDC cables ("bootstrapping")
- Technological solutions
  - e.g. Dynamic Line Rating (DLR)
- Congestion management
  - e.g. Locational Marginal Pricing (LMP)






Dynamic Line Rating instrumentation, ERCOT West Texas




# Centralised planning approaches have been effective mechanisms for transmission network development

Competitive Renewable Energy Zones (CREZ) in Texas have seen grid for 18.5 GW of wind built in 4 years



Group Processing in Ireland sets out rules for development of grid to support tranches of RES-E projects





## Addressing public acceptance issues is critical

Public acceptance issues have the potential to significantly delay transmission development project but there are mitigation options:

- Active stakeholder management and public consultation
- Undergrounding or partial undergrounding (subject to technical limitations)
- Overlaid HVDC ("bootstrapping")





#### **Technological solutions have a role**

Effective technology solutions can avoid or defer investment in additional network capacity.

They should be promoted as policy as appropriate.

- Dynamic Line Rating (DLR)
  - Use of real time measurements can result in 25-30% increases in line capacity 90% of the time
- Special Protection Schemes (SPS)
  - Use of automatic corrective actions can avoid and/or delay infrastructure investment
- Active Network Management
  - Integrated systems can result in greater use of network capacity in low and medium voltage networks
  - They use real time measurements and control to manage a variety of resources against multiple constraints



Dynamic Line Rating instrumentation, ERCOT West Texas



#### **Congestion management provides import benefits** Leading options for efficiency congestion management include:

#### Net Transfer Capabilities (NTC)

Primarily used to manage cross border flows

 Computed periodically based on total transfer capacities (TTCs)

Bilateral: problem of loop flows

Systems are exposed to re-dispatch costs when actual conditions differ significantly from those assumed during calculation of NTCs.

 Unexpected increases in wind power production can result in high re-dispatch costs in other regions

 See for example, Poland considering installing phase-shifting transformers

#### Locational Marginal Pricing (LMP)

- LMPs are the shadow nodal prices in Optimal Power Flow problem
- Wholesale prices include a congestion component, and differ between location.
- •Used successfully in North America (PJM, NYISO, CAISO, ISO-NE MISO, and ERCOT)
- Requires centralised coordination
- With LMPs, causes, impacts and costs of congestion are more transparent
- Forces tighter coordination of real time system operation
- Strong resistance to the concept in Europe, likely due to exposure of sources of congestion



## Agenda

- Introduction and Objectives
- **1.Securing RES-E Generation**
- 2.Securing Grid Infrastructure
- **3.Enhancing System Flexibility**
- 4. Securing Generation Adequacy
- Synthesis and Discussion
- Concluding Remarks

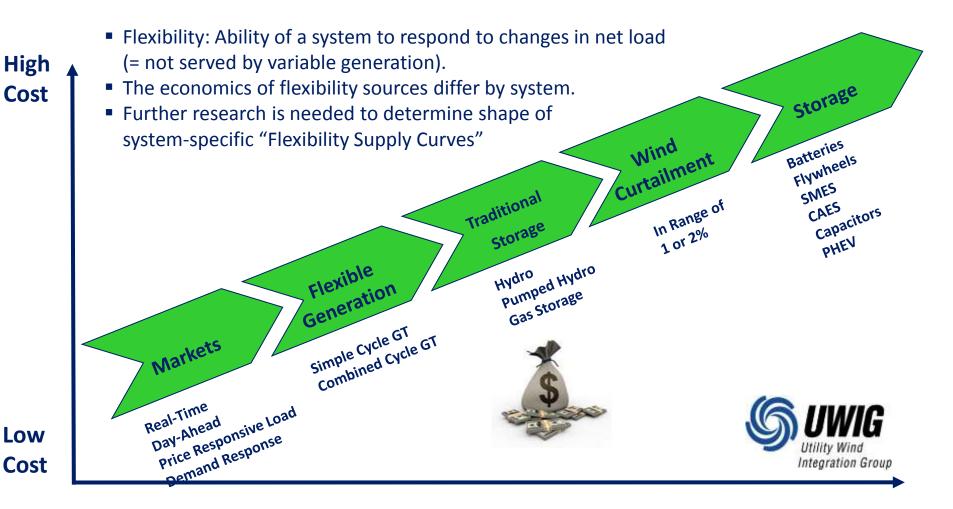
## What is flexibility?

- More variable generation on a system increases the variability of the 'net load'
- 'Net load' is the remaining system demand not served by variable generation
- Flexibility is considered as the ability of a system to deploy its resources to respond to changes in net load.
- High flexibility implies the system can respond quickly to changes in net load.








## Where can flexibility come from?

- Sophisticated system operation techniques
- Market arrangements
- Demand Side Management
- Flexible Conventional Units
- Additional Reserve Capacity
- Interconnection
- Storage





#### Flexibility options vary in cost





## Metrics: How much flexibility is needed on a system?

Accurately estimating how much flexibility is required under a given RES-E penetration is central to effective policy planning. Thus flexibility metrics is an active research area, e.g.:

- NERC Flexibility Intensity Metric (2010)
- IEA GIVAR FAST method (2012)
- IRRE: Insufficient Ramping Resource Expectation (2012)
- No single accepted flexibility metric exists

All metrics so far are highly data intensive, since accurate estimates require sub-hourly precision

Metrics can signal how much flexibility is needed but do not address how to achieve/incentivise this flexibility www.iea-retd.org





## How to incentivize and reward flexibility

- There are contrasting perspectives on the best path towards incentivization of flexibility
  - Some observers suggest that "capability-based" mechanisms are likely to be a key part of evolution towards high RES-E futures.
  - Another perspective is that continued evolution in market design, e.g. very fast energy-only markets, widespread nodal pricing, and demand-side bidding, will be sufficient to reward flexibility
  - Some systems are in the process of designing and implementing specific flexibility incentivisation products (e.g. California Independent System Operator)
- The optimal path will vary by context, but the need to incentivize capability will be increasingly acute in high variable RES-E futures.



## Agenda

- Introduction and Objectives
- **1.Securing RES-E Generation**
- 2.Securing Grid Infrastructure
- **3.Enhancing System Flexibility**
- **4.Securing Generation Adequacy**
- Synthesis and Discussion
- Concluding Remarks

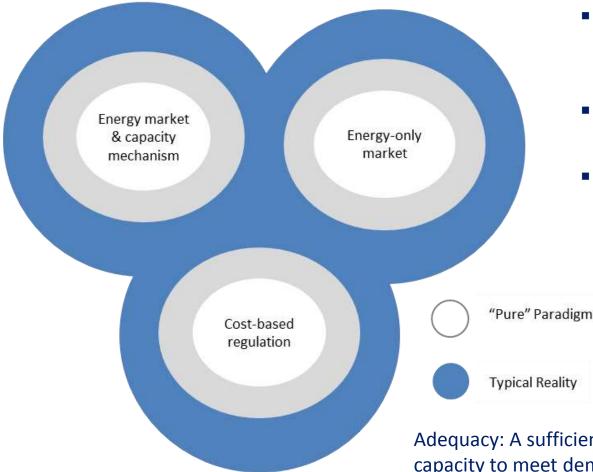


# High RES-E may amplify existing concerns about securing resource adequacy

- Resource adequacy is defined as a sufficient level of generating capacity to meet demand at some future date.
- In competitive energy markets, there are various pre-existing challenges in ensuring adequate generation capacity procurement
- Increase in zero / low marginal cost RES-E will alter operation of conventional units on the system & thereby revenues and investment incentives, and may further complicate the procurement of capacity



## Aggregate revenue impacts of high RES-E are complex and unclear


- The net impact on revenues (positive / negative ) depends on type of unit & market structure.
- Impact on energy prices



Impact on emissions costs / +

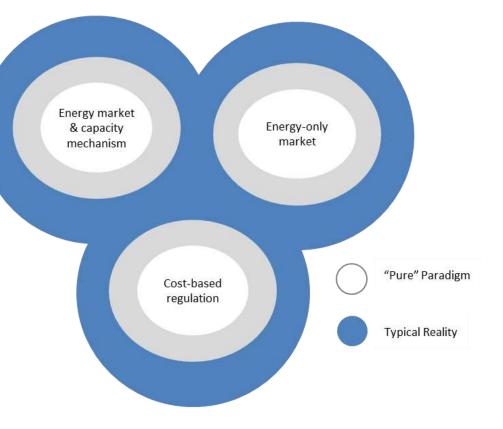


## Capacity adequacy is addressed differently under the three dominant power market paradigms



- Electricity prices are key to conventional generator revenues
- Rules vary significantly by market structure.
- Real-world power markets rarely conform to ideal or "pure" paradigms.

## Adequacy: A sufficient level of generating capacity to meet demand at some future date




# Capacity adequacy is addressed differently under the three dominant power market paradigms

 Energy-only markets tend to have more volatile prices

 Capacity mechanisms are more administratively managed market structures but act like an 'insurance premium' against capacity shortfalls

 Cost-plus regulated markets allow prices to be set by regulators





# Can generation assets recover fixed costs in energy- only markets?

- The answer depends on:
- Regulatory credibility will regulator avoid intervening during times of high prices?
- Demand participation how great is DSM potential?
- •Uncertainty will banks and developers consider scarcity revenues as sufficiently bankable for new investment?

All three have been issues prior to high variable RES-E penetrations, but may be exacerbated by:

- Increased volatility from high variable RES-E
- •Uncertainty surrounding capacity value for variable RES-E



## Several options exist to securing generation adequacy in high RES-E futures

#### Capacity Payments

In Ireland, the cost of peaking generation units is offered on a fixed basis to all generation that provides power during peak periods.

#### Capacity Markets

Some entities are made responsible to contract sufficient (equivalent) firm capacity to meet peak demand. Capacity resources typically include new or existing generation, imports, or demand response.

#### Strategic Reserves.

TSO or other entity contracts on behalf of regulator for peaking capacity or demand resources. Resources only are entered into market above a predefined strike price —difficult to finance in energy markets.

#### Measures to Strengthen Energy-Only Markets.

•Example: Support for longer-term energy contracting to level annual variation of energy revenue . Contracts in Europe are 1-3 years ahead of power sale.



## Securing generation adequacy in high RES-E futures requires coordination

- Each of these leading options implies:
- Some level of administrative intervention into energy markets
- Medium or high risk to power plant investors
- Complex implications for demand-side resources and inter-regional trade.



All above imply that administrative coordination of energy markets is likely to increase into the future



### Agenda

- Introduction and Objectives
- **1.Securing RES-E Generation**
- 2.Securing Grid Infrastructure
- **3.Enhancing System Flexibility**
- 4. Securing Generation Adequacy
- Synthesis and Discussion
- Concluding Remarks



# The path to power system transformation will not require policy or technology revolutions, but...

... an active, sustained, and coordinated evolution is central to next-generation RES-E policy.

Five principles that can guide this evolution are:

Harmonizing Policy, Market, and Technical Operation

First Generation: RES-E Policy Rediscovering Coordination

Principles

Transition

Bolstering Confidence in Regulatory and Market Paradigms

> Sustaining Public Support

**Guiding Innovation** 



Next Generation: Integrated Power System Policy



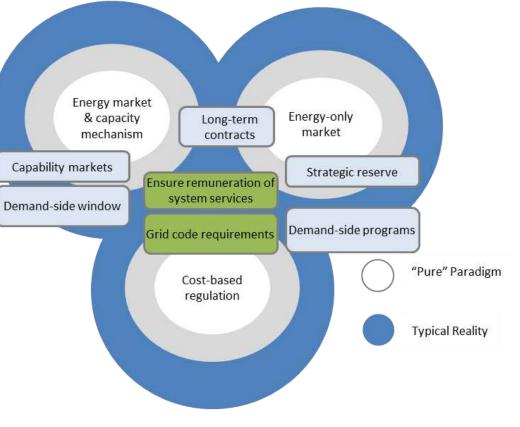
## Harmonising Policy, Market, and Technical Operation

- RES-E remuneration schemes should be designed to minimise operational impact and market distortion
  - At high penetrations priority dispatch must give way to system stability
- RES-E remuneration schemes should create flexibility for future changes to market and system-operation rules, e.g.
  - Congestion management
  - Energy imbalances
  - Gate closure; dispatch rules
- Network protocols should maximise utilisation of existing resources
  - Greater grid-support participation from RES-E technologies required at high penetrations – e.g. reactive current injections during faults.
- Rigorous performance standards are required to unlock demand response potential as a RES-E balancing resource.



### **Rediscovering Coordination**

Across the RES-E policy landscape, there are various examples of the need for greater coordination:


- Optimising the geographic deployment of distributed and large-scale RES-E generation to maximise the capacity of existing networks
- Coordinating and sequencing large-scale transmission investments to access remote RES-E generation resources
- Identifying and incentivising the flexibility options which span generation, grid, advanced system operation, demand-side resources, and storage



## **Bolstering Confidence in the Regulatory Paradigm**

Confidence in the stability of the market and regulatory structures is necessary for a positive investment environment.

- A range of regulatory changes may be required to accommodate high RES-E.
- Allow market and regulatory evolution without undermining confidence in the basic paradigms.



Illustrative paradigm-specific approaches to key RES-E challenges.



## **Sustaining Public Support**

Across jurisdictions, public support will be necessary to continue the transition to high RES-E futures.

Key policy questions to be addressed to sustain public support:

"Who Pays" — Who absorbs the costs of different policies (e.g., incentives for new generation, reinforcement costs for the distribution network, congestion costs). This will impact public support.

"Winners and Losers" — Policies can anticipate and help soften the impact of new policy instruments

Stability versus Evolution" — Policymakers must strike a balance between providing policy stability to encourage investment and deployment of RES-E, and responding to changing market conditions, costs, and rules governing power-system operations.



### **Guiding Innovation**

Innovation in the realms of technology, business models, market design, and project development likely will be vital to the transition to high RES-E systems, and reducing associated costs.

Examples include:

- Large-scale residential and small commercial demand response aggregation
- Viable business models for DSOs under high-RES-E futures
- Private investment in merchant transmission projects
- Viable storage and energy services business models
- Novel financing structures for RES-E generation projects



### Agenda

- Introduction and Objectives
- **1.Securing RES-E Generation**
- 2.Securing Grid Infrastructure
- **3.Enhancing System Flexibility**
- 4. Securing Generation Adequacy
- Synthesis and Discussion
- Concluding Remarks



### Technical and policy options can make it work

#### Securing RES-E generation

- Incentives can be designed to encourage positive interplay with markets and systems operations
- Incentives can be designed to be responsive to changing market conditions

#### Securing grid infrastructure

- Centralized coordination has a role in transmission-network development
- Various policy and technology approaches help reduce public acceptance risk
- Improved congestion-management practices (e.g. locational pricing) are important complements to grid extension
- Deferral of grid investment creates value (e.g. through dynamic line rating technology)



### Technical and policy options can make it work

#### Enhancing flexibility

- Flexibility requirements and solutions are highly dependent on system characteristics
- Further progress in market design could unlock flexibility (e.g. locational pricing, demand side bidding)
- Mechanisms rewarding flexible capabilities will be a key part of enhancing flexibility
- Methods of quantifying flexibility needs require further development

#### Securing generation adequacy

- Administrative intervention to achieve adequacy in energy markets is unlikely to diminish in the near term
- Adequacy solutions will have complex and significant impacts on various power stakeholders



## Strategy sets reflect penetration levels, and grow more interdependent at high penetrations

#### Example policy evolution through stages of RES-E penetration.

|                               | Securing RES-E<br>Generation                                                                                              | Securing Grid<br>Infrastructure                                                              | Short-Term Security of Supply: <i>Flexibility</i>                                                                            | Long-Term Security<br>of Supply:<br><i>Adequacy</i>                            |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Low<br>Variable<br>RES-E      | Establish basic RES-E<br>support mechanisms<br>(e.g., Feed-in tariffs,<br>targets, tenders)                               | Evaluate grid<br>infrastructure needs in<br>light of RES-E<br>resources                      | Evaluate system<br>flexibility levels;<br>determine binding<br>flexibility constraints                                       | Evaluate<br>functioning of<br>adequacy<br>mechanisms                           |
| Moderate<br>Variable<br>RES-E | Integrate RES-E into dispatch optimisation                                                                                | Establish RES-E grid<br>codes and designated<br>transmission zones                           | Improve forecasting<br>Broaden balancing-<br>area footprints                                                                 | Initiate capacity-<br>adequacy studies                                         |
| High<br>Variable<br>RES-E     | Influence location of<br>RES-E on grid to<br>lessen distribution or<br>bulk grid impacts<br>Encourage RES-E<br>production | Employ low-visibility<br>transmission<br>technologies<br>Employ active network<br>management | Employ advanced<br>system operation<br>(e.g., advanced unit<br>comfvise storage<br>and/or additional<br>flexible generation) | Improve adequacy<br>mechanism in<br>accordance with<br>predominant<br>paradigm |



## Integration of RES-E policies in energy market policies

- At relatively low levels of generation, few operational issues arise due to RES-E.
- In high-RES-E systems around the world, next-generation RES-E policies increasingly are shaped by broader systemic considerations.
- It is evident that RES-E will impact all parts of power-system policy.
- RES-E considerations are becoming a fundamental component of nextgeneration "power-system policy."





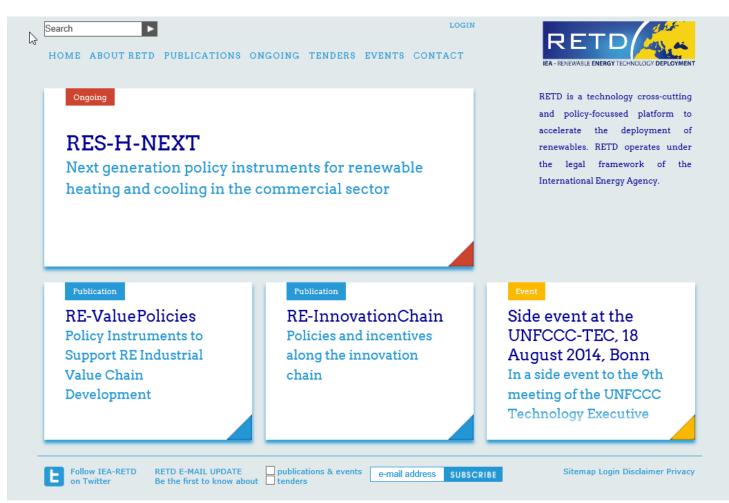
### **Evolution vs. Revolution**

No technical or policy revolutions are necessary to achieve high-RES-E futures, but...

 ... anticipating and managing policy interactions and policy debates will be key

 ... as RES-E graduates into more central role in power-system operation, policy harmonisation will help maintain RES-E growth in an evolving power systems.

 ... coordinated evolution is crucial, guided by sustained, active leadership to establish transition pathways.






## Website: www.iea-retd.org

**Contact:** 

## info@iea-retd.org, kristian.petrick@iea-retd.org



## **THANK YOU!**

For additional information on RETD

Online:www.iea-retd.orgContact:info@iea-retd.org

