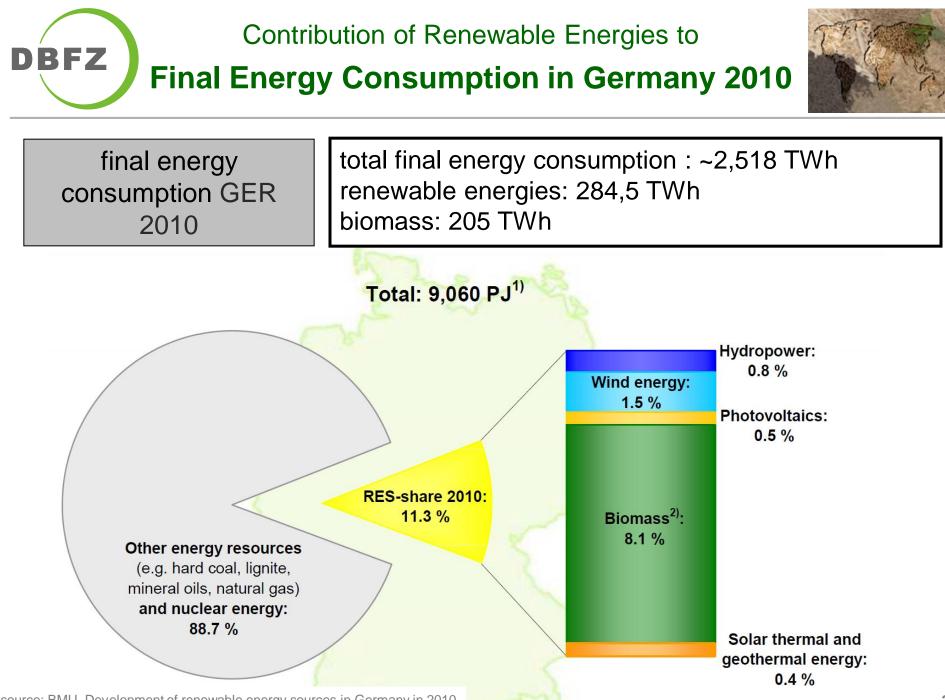
Deutsches BiomasseForschungsZentrum gemeinnützige GmbH

Determination of Feed-In-Tariffs for Bioenergy

Alexander Krautz, Christiane Hennig

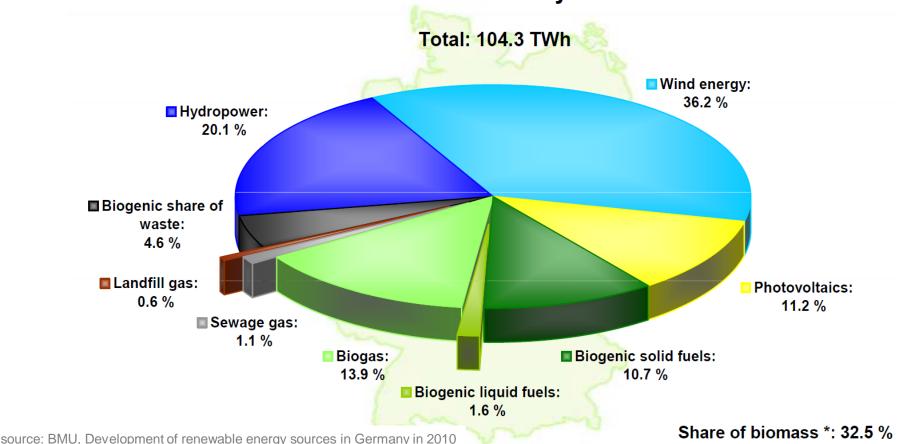


Japan Renewable Energy Foundation - FIT-Workshop

Tokyo, 6 March 2012

Deutsches BiomasseForschungsZentrum gemeinnützige GmbH, Torgauer Str. 116, D-04347 Leipzig, www.dbfz.de

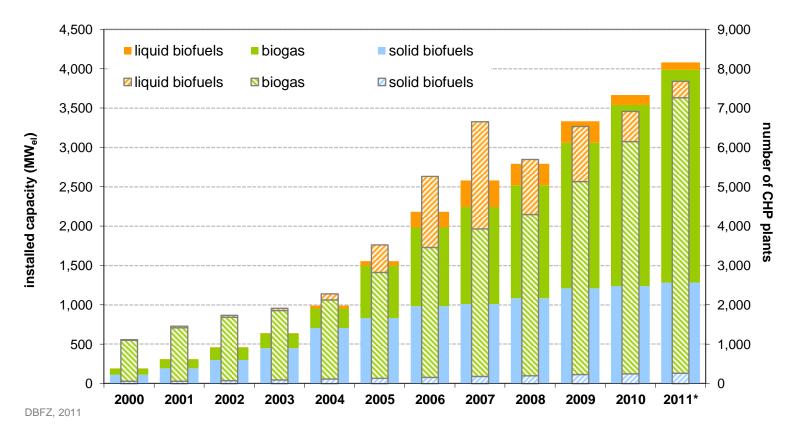
DBFZ	DBFZ Departments							
Capacity Building / Technology Transfe	r							
			Bioenergy Sys	stems				
Theoretical Researce Advisory Activities / Monitoring								
Evperimental		ochemical onversion	Biorefinerie	I nermo-	Chemical			
Experimental Research	Laboratory							
		& demo Fu cilities	urnace test facilities	Biogas laboratory	Engine test beds	Emissions		


source: BMU, Development of renewable energy sources in Germany in 2010

Status quo: RE share in total power consumption 17%, thereof 32.5% biomass (2010)

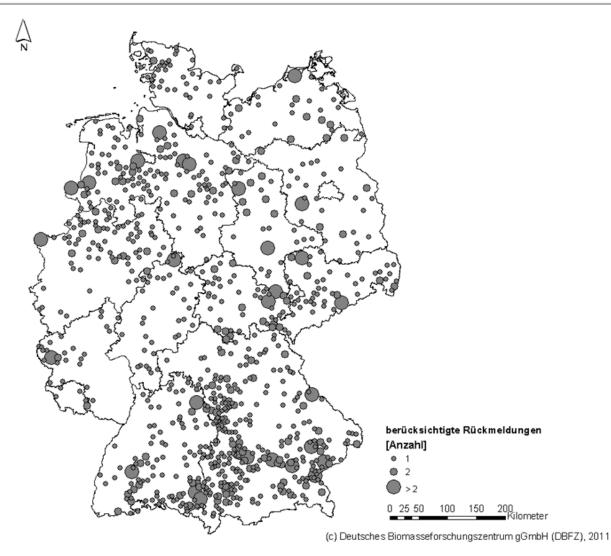
Goal: RE share of 30% in power consumption by 2020

Structure of electricity supply from renewable energy sources in Germany 2010


Development of electricity production from biomass under the German renewable energy source act (EEG)

■ End of 2011

- number of CHP plants:
- installed capacity:
- realised power generation:


7,677 4,080 MW_{el} 27 TWh_{el}/a

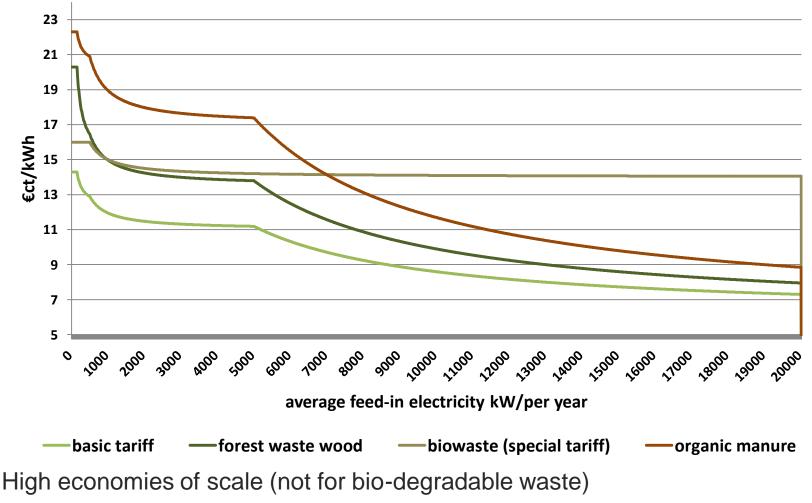
Distribution of biogas plants in germany

Decentralized production - reduce grid extension

EEG 2012 - Biomass tariffs

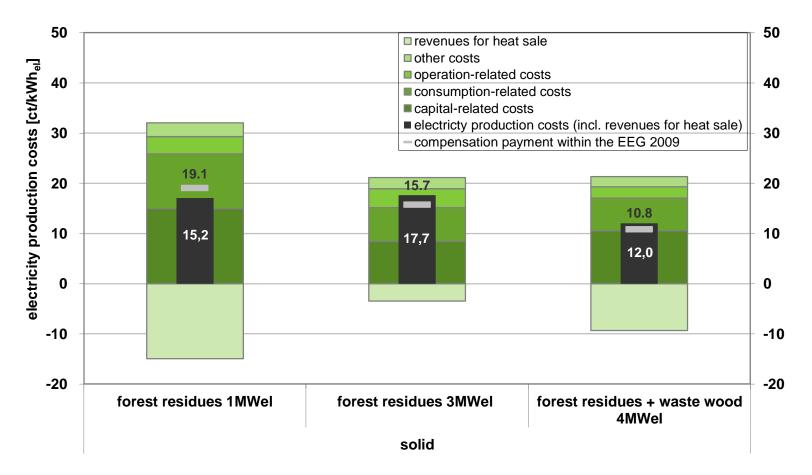
	Tariff for									
	Biogas (excl. bio-degrad	Bio-degradable waste fermentation with post- rotting	Small manure installations						
Rated average annual capacity	Basic tariff	Substance tariff class I	Substance tariff class II	Biogas processing bonus	-	-				
[kW _{el}]	[€ct/kWh _{el}]									
≤ 75				size of biogas		25				
≤ 150	14.3	6	8	production plant ≤700 standard cubic metre (sm³)/h: 3	16					
≤ 500	12.3									
≤ 750	11	5 (2.5)	00	≤1,000 sm³/h: 2	14					
≤ 5,000	11	4 (2.5)	8 0. 6	≤1,400 sm³/h: 1						
≤ 20,000	6	-	-	-						

- Structure: basic tariff + substance tariff class + processing bonus
- Substance tariff is paid according to the amount of the energy share
- Processing bonus is paid, if the natural gas grid is used
- Further requirements e.g. minimum heat use 60% (100% for gas from natural gas grid); bonus for market and grid integration


Rules of the EEG 2012

- Basic Tariff
 - Economies of scale ⇒ size degression
 - Reference Full load hours per year
 - Funding only up to 20 MW
- Substance classes
 - Differentiation of the substances is necessary because of different provision costs and energy yield
- Extra tariff for bio-degradable waste and small manure installations
- Duration of payment 20 years after year of comissioning
- Degression rate 2% per year (not for substance tariff classes)
- No co-incineration of fossil fuels is allowed
- No further funding for
 - Liquid biomass
 - ⇒ high increase of vegetable oil prices because of food demand from Asia
 - ⇒ basic principle of the funding Food First!
 - Waste wood with the expection of industrial residual wood
 - \Rightarrow All potentials in use \Rightarrow market balance is reached

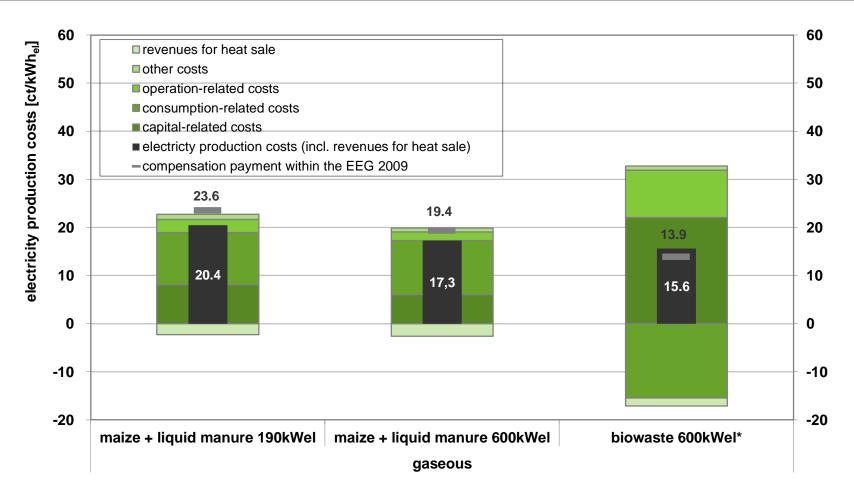
Overview of different tariffs dependent on the average feed-in



- Some potentials can be unlocked through small systems (liquid manure)
- Bigger systems use mainly wood residues, waste wood and industrial wood

DBFZ

Results of economic analysis electricity production costs of solid biomass



- The investment of the bioenergy plant and the consumption of raw materials have the main impact on the total electricity production costs
- The revenues for heat sale is often the determining factor for economic efficiency

Results of economic analysis electricity production costs of biogas

* negative operation related cost because of waste removal.

 The consumption of raw materials has the high impact on the total electricity production costs

Some basic questions for setting a FIT for biomass

- Are there any non-used high potentials of biomass?
- Are there any competitions around the biomass potentials?
- What is the level of available biomass resources at a certain location?
 - Background: Biomass resources have a very different energy density
 - Biogas substances have gernerally a big moisture content
 - ⇒ only short transport distances are suitable
 - ⇒ biogas substances have a local market

BFZ

- Solid biomass with a low moisture content has a high energy density
- ⇒ larger transport distances are possible
- ⇒ solid biomass substances are traded nationally and internationally

Which kind of stakeholder structure is given?

- Biogas production in Germany has a mainly agricultural small-scale structure
 ⇒ high agricultural added value
- Due to the technology solid biomass installations have generally larger capacities
- ⇒ larger stakeholders are necessary

Conclusion

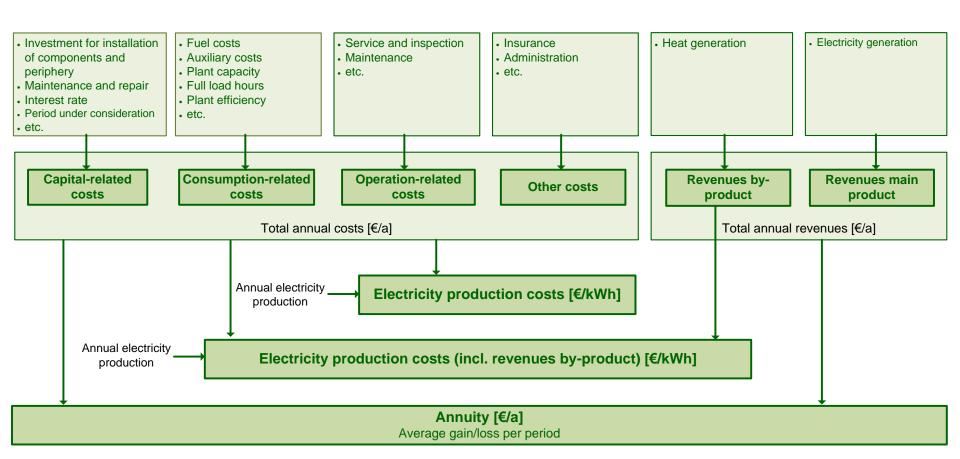
- The bioenergy sector is very heterogen with many different sources, technologies and stakeholders
- An excessive or insufficient support of individual plants can occur
- Clear conditions for investors are necessary especially for farmers
- The cost reductions will not be as high as for wind or PV because of the prices for biomass, but a value chain for the agricultural sector can be created
- The future of biomass use is a system integrated provison
 - Provision of system services first pools of biogas plants in Germany provide positive and negative secondary balancing power
 - Compensation of volatile renewable energies
 - The introduction of co-incineration in Germany would destroy the established market for solid biomass and will hinder the move towards alternative energies (high emissions of coal)

Many thanks for your attention!

German Biomass Research Centre

Torgauer Straße 116 04347 Leipzig Germany www.dbfz.de

Contact:


Dipl.-Geogr. Alexander Krautz Alexander.Krautz@dbfz.de Tel. +49(0)30 - 18305 - 4683

Overview of the Methodology of the Economic Analysis

BFZ

Profitability Analysis Annuity method

